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Afees A. Salisu:

RESIDUAL DIAGNOSTICS

Before drawing conclusions/policy inference from any of the above

estimated regressions, it is important to perform relevant diagnostic tests to

verify the validity of the classical linear regression models. The most

critical of these assumptions are:

Linearity: That there is a linear relationship between the dependent
variable (MD) and the independent variables (GDP and R). The
violation of this assumption may imply that the model under
consideration is non-linear or incorrectly specified.

Homoscedasticity: Each disturbance term has the same finite
variance. The violation of this assumption is an indication of the
presence of heteroscedasticity in the model.

Non-Autocorrelation: Each disturbance term is uncorrelated with
other disturbance term. There is presence of autocorrelation if the
assumption is violated.

Normality: The disturbances are normally distributed. Its violation
may imply non-normality of the error term.
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5.1 Testing for the presence of Serial Correlation

Is there evidence of autocorrelation problem in the estimated model? To
answer this, EViews provides us with several methods of testing for the
presence of serial correlation.

The two common residual tests of serial correlation are Correlograms-Q-
Statistics and the Breusch-Godfrey LM tests.

» To perform any of these tests, let us consider the following double log
regression results;
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> A quick glance at the results reveals that the coefficients are
statistically significant and the goodness of fit is very high. However,
if the error term is serially correlated, the estimated OLS standard
errors are inefficient which consequently renders the statistical
inferences invalid.

5.1.1 Correlograms-Q-Statistics

> To ascertain the validity or otherwise of the estimates via Q-
Statistics, from the regression results above, select View/Residual



Diagnostics/Correlogram-Q-statistics - and enter the maximum lag

order of serial correlation to be tested (say 5) in the Lag Specification

dialog then Click OK.
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> EViews will display (as shown below) an Autocorrelation and

Partial autocorrelation functions of the residuals as well as Ljung-

Box Q-statistics for high-order serial correlation. If there is no serial

correlation, then, all the Q-statistics should be insignificant. In other

words, there is no serial correlation, if the pvalues are greater than

0.10.
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The Q-statistics are significant at all lags, indicating significant serial
correlation in the residuals. That is, there is presence of serial

correlation.

Breusch-Godfrey Serial Correlation LM Test

To ascertain the validity or otherwise of the estimates via LM Test
Statistics, select View/Residual Diagnostics/ Serial Correlation LM

Test.
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> Again, enter the highest order of serial correlation to be tested in the
Lag Specification dialog (i.e. as previously demonstrated) then
Click OK. The results would appear as below:
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Breusch-Godfrey Serial Correlation LM Test:

m

F-statistic 6.126449 Prob. F(5.24) Cc.0009
Obs*R-squared 17.94237 Prob. Chi-Square(5) C.0030

» The null hypothesis of the test is that there is no serial correlation in
the residuals up to the specified lag order. EViews reports a statistic
labeled "F-statistic" and "Obs*R-squared" statistic.

» Consequently, both statistics for the LM test reject the hypothesis of
no serial correlation up to lag order five.

» Note also that both the Q-statistic and the LM test indicate that the
residuals are serially correlated.

» The implication of this finding is that the regression results cannot be
interpreted in their present form because of invalid statistical
inferences.

» How do we resolve this problem? This will be addressed later.

5.2 Testing for the presence of Heteroscedasticity

Again, the homoscedasticity assumption must be satisfied for the
regression results to be valid. Therefore, testing for the presence of
heteroscedasticity in a linear regression model is inevitable. EViews allows
you to employ a number of different heteroscedasticity tests namely,
Harvey, Glejser, ARCH, White and Breusch-Pagan-Godfrey. Since they
are post-estimation tests, they are performed on the regression results.




> Using Eviews, from the estimation output, select View/Residual
Diagnostics/Heteroscedasticity Tests. The following dialog box

comes up.
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» Choose the default option by clicking on Breusch-Pagan-Godfrey in
the Test type box. Click OK and the following results would appear;
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> Given the insignificant F-statistic and Obs*R-squared based on the p-
values, we cannot reject the null hypothesis of homoscedasticity
against the alternative of heteroscedasticity.



» To further validate the robustness of this result, we may explore any
of the alternative heteroscedasticity tests (i.e. ARCH LM test) from
the list of Test Types using similar procedure as follows:
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The result seems to suggest otherwise and since the ARCH LM test is more
powerful; the result of the latter is more reliable and therefore, conclusion
should be based on the ARCH-LM test.



