Getting started with EViews 7

(Volume II)

Afees A. Salisu¹

5.0 **RESIDUAL DIAGNOSTICS**

Before drawing conclusions/policy inference from any of the above estimated regressions, it is important to perform relevant diagnostic tests to verify the validity of the classical linear regression models. The most critical of these assumptions are:

- Linearity: That there is a linear relationship between the dependent variable (MD) and the independent variables (GDP and R). The violation of this assumption may imply that the model under consideration is non-linear or incorrectly specified.
- Homoscedasticity: Each disturbance term has the same finite variance. The violation of this assumption is an indication of the presence of heteroscedasticity in the model.
- Non-Autocorrelation: Each disturbance term is uncorrelated with other disturbance term. There is presence of autocorrelation if the assumption is violated.
- Normality: The disturbances are normally distributed. Its violation may imply non-normality of the error term.

¹ Contacts: Department of Economics, Federal University of Agriculture, Abeokuta, Nigeria & Centre for Econometric & Allied Research, University of Ibadan, Ibadan, Nigeria. Email: <u>salisuaa@funaab.edu.ng</u>; <u>aa.salisu@cear.org.ng</u>. Research assistance by Tirimisiyu Oloko and Kazeem Isah is acknowledged.

5.1 Testing for the presence of Serial Correlation

Is there evidence of autocorrelation problem in the estimated model? To answer this, **EViews** provides us with several methods of testing for the presence of serial correlation.

The two common residual tests of serial correlation are **Correlograms-Q-Statistics** and the **Breusch-Godfrey LM** tests.

To perform any of these tests, let us consider the following double log regression results;

iew Proc Objec	Dependent Variable: LO	DG(MD)			
ange: 1981 20	Method: Least Squares	11:00			
ample: 1981 20	Sample: 1981 2012	11.00			
gdp	Included observations:	32			
nnt M md	Variable	Coefficient	Std. Error	t-Statistic	Prob.
resid	С	-7.150042	0.415896	-17.19189	0.0000
	LOG(GDP)	1.015282	0.021847	46.47301	0.0000
	LOG(INT)	-0.468328	0.160768	-2.913060	0.0068
	R-squared	0.988535	Mean depend	lent var	-0.981834
	Adjusted R-squared	0.987745	S.D. depende	ent var	2.285865
	S.E. of regression	0.253054	Akaike info cr	iterion	0.178634
	Sum squared resid	1.857057	Schwarz crite	rion	0.316047
	Log likelihood	0.141850	Hannan-Quin	in criter.	0.224183
	F-statistic	1250.252	Durbin-Watso	on stat	0.538329
	Prob(F-statistic)	0.000000			

A quick glance at the results reveals that the coefficients are statistically significant and the goodness of fit is very high. However, if the error term is serially correlated, the estimated OLS standard errors are inefficient which consequently renders the statistical inferences invalid.

5.1.1 Correlograms-Q-Statistics

To ascertain the validity or otherwise of the estimates via Q-Statistics, from the regression results above, select View/Residual **Diagnostics/Correlogram-Q-statistics** \rightarrow and enter the maximum lag order of serial correlation to be tested (say 5) in the Lag Specification dialog then Click OK.

View Proc Object Print Name	Freeze	Estimate	Forecast	Stats	Resids	
Regresentations Estimation Output Actual, Fitted, Residual						
<u>ARMA Structure</u> <u>G</u> radients and Derivatives Covariance Matrix	·	Std. Err	or t-६	Statisti	ic F	Prob.
<u>C</u> oefficient Diagnostics		0.41589	96 -17 47 46	.1918	9 0	.0000
Residual Diagnostics	•	Correlo	gram - Q	-statis	tics	
Stability Diagnostics	-	Correlo <u>H</u> istogr	gram <u>S</u> qu am - Nor	uared f mality	Residua Test	ls
Log likelihood 0.14 F-statistic 1250	1850 0.252	<u>Serial</u> C <u>H</u> etero	orrelation skedastici	ty Test	est ts	

Equation: UNTIT	LED Workf	ile: BABC	OCK DAT	A::Untitled	/E		-	
View Proc Object	Print Name	Freeze	Estimate	Forecast	Stats	Resids		
Dependent Variable Method: Least Squa Date: 01/05/15 Tin Sample: 1981 2012 Included observatio	e: LOG(MD) ares ne: 15:49 2 ons: 32							
Variable	Lag S	pecificat	ion	x	tatisti	c F	Prob.	:S
C LOG(GDP) LOG(INT)		Lags to inc	dude: 5		1918 4730 1306	9 0 1 0 0 0	.0000 .0000 .0068	
R-squared Adjusted R-squared S.E. of regression Sum squared resid		OK	Can	cel	ır	-0.98 2.28 0.17 0.31	31834 35865 78634 16047	

EViews will display (as shown below) an Autocorrelation and Partial autocorrelation functions of the residuals as well as Ljung-Box Q-statistics for high-order serial correlation. If there is no serial correlation, then, all the Q-statistics should be insignificant. In other words, there is no serial correlation, if the pvalues are greater than 0.10.

iew Proc Object	Print Name Freeze	Estimate	Fore	cast Sta	ats Resids	
	Correlogram	n of Res	idual	S		
Date: 01/05/15 Tim	ne: 15:40					
Sample: 1981 2012						
Included observatio	ns: 32					
Autocorrelation	Partial Correlation	ł	AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	/	AC	PAC 0.699	Q-Stat 17.169	Prob
Autocorrelation	Partial Correlation	1 0	AC 0.699	PAC 0.699 -0.174	Q-Stat 17.169 22.982	Prob 0.000 0.000
Autocorrelation	Partial Correlation	1 0 2 0 3 0	AC 0.699 0.400 0.091	PAC 0.699 -0.174 -0.235	Q-Stat 17.169 22.982 23.290	Prob 0.000 0.000 0.000
Autocorrelation	Partial Correlation	1 0 2 0 3 0 4 -0	AC).699).400).091).095	PAC 0.699 -0.174 -0.235 -0.020	Q-Stat 17.169 22.982 23.290 23.642	Prob 0.000 0.000 0.000 0.000

The Q-statistics are significant at all lags, indicating significant serial correlation in the residuals. That is, there is presence of serial correlation.

5.1.2 Breusch-Godfrey Serial Correlation LM Test

To ascertain the validity or otherwise of the estimates via LM Test Statistics, select View/Residual Diagnostics/ Serial Correlation LM Test.

View Proc Object Print Na	me	Freeze	Estimate	Forecast	Stats	Resids	
Representations Estimation Output Actual,Fitted,Residual ARMA Structure		•					
Gradients and Derivative	s	•	Std. Err	or t-s	Statisti	ic F	Prob.
<u>Coefficient Diagnostics</u>		-	0.41589	96 -17 47 46	7.1918 6.4730	9 0	.0000
Residual Diagnostics		•	Correlo	gram - Q	-statis	tics	
Stability Diagnostics			Correlo	gram <u>Sq</u>	uared F	Residua	ls
Label		_	Histogr	am - Nor	mality	Test	
Sum squareu resiu	1.00	1031	Serial C	orrelation	n LM T	est	
Log likelihood F-statistic	0.14	1850	Heteros	skedastici	ity Test	ts	
Prob(F-statistic)	0.00	0000					

 Again, enter the highest order of serial correlation to be tested in the Lag Specification dialog (i.e. as previously demonstrated) then Click OK. The results would appear as below:

E	quatic	n: UNTI	TLED	Workfi	le: BABC	OCK DAT	A::Untitled	/1		- 0	×
View	Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resids		
Breu	sch-C	Godfrey S	Serial (Correla	ation LM	Test:					*
F-sta	tistic			6.12	26449	Prob. F(5	,24)		0	0009	=
Obs'	R-sq	uared		17.9	94237	Prob. Chi	-Square(5)	0	0030	

- The null hypothesis of the test is that there is no serial correlation in the residuals up to the specified lag order. EViews reports a statistic labeled "F-statistic" and "Obs*R-squared" statistic.
- Consequently, both statistics for the LM test reject the hypothesis of no serial correlation up to lag order five.
- Note also that both the Q-statistic and the LM test indicate that the residuals are serially correlated.
- The implication of this finding is that the regression results cannot be interpreted in their present form because of invalid statistical inferences.
- > How do we resolve this problem? This will be addressed later.

5.2 Testing for the presence of Heteroscedasticity

Again, the homoscedasticity assumption must be satisfied for the regression results to be valid. Therefore, testing for the presence of heteroscedasticity in a linear regression model is inevitable. EViews allows you to employ a number of different heteroscedasticity tests namely, **Harvey, Glejser, ARCH, White** and **Breusch-Pagan-Godfrey.** Since they are post-estimation tests, they are performed on the regression results.

Using Eviews, from the estimation output, select View/Residual Diagnostics/Heteroscedasticity Tests. The following dialog box comes up.

Choose the default option by clicking on Breusch-Pagan-Godfrey in the Test type box. Click OK and the following results would appear;

/iew Proc Object Prin	nt Name Freeze	Estimate Forecast Sta	ts Resids
Heteroskedasticity Tes	st Breusch-Pag	an-Godfrev	
F-statistic	1.822757	Prob. F(2.29)	0.1796
F-statistic Obs*R-squared	1.822757 3.573430	Prob. F(2,29) Prob. Chi-Square(2)	0.1796

Given the insignificant F-statistic and Obs*R-squared based on the pvalues, we cannot reject the null hypothesis of homoscedasticity against the alternative of heteroscedasticity. To further validate the robustness of this result, we may explore any of the alternative heteroscedasticity tests (i.e. ARCH LM test) from the list of Test Types using similar procedure as follows:

liew	Proc Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resids	
	an a los el a a ti a ti	T	-						
Hele	roskedasticit	y lest	ARCH						
F-sta	noskedasticit atistic	y lest	ARCH 3.76	5563	Prob. F(5	,21)		0	.0137

The result seems to suggest otherwise and since the ARCH LM test is more powerful; the result of the latter is more reliable and therefore, conclusion should be based on the ARCH-LM test.