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Introduction 

Consider a linear regression model of the 
type: 

 

Where Y is continuous while the X’s can 
be purely continuous, dichotomous 
(dummy variables) or both.  

 Recall that a continuous variable is one 
that can take any value between two 
numbers.  

0 1 1 2 2 k kY X X X         
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Intro... 

• Examples of continuous variables include 
interest rate, inflation rate, weight, height, 
gdp, money supply, exchange rate, etc.  

• In general, most economic and financial 
variables are continuous variables.  
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Intro... 

• If the specified model is linear, so far the 
dependent variable is continuous, we  can 
estimate with a linear estimator such as 
the Ordinary Least Squares (OLS) and do 
model checking, visualize results, etc.  
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Intro... 
If the model is non-linear (but the 

dependent variable is still continuous), we 
can transform or add variables to get the 
equation to be linear. 

For instance,   

• We can take logs of Y and/or the 
X’s  depending on the source(s) of non-
linearity. 

• We can also add squared terms as well as 
interaction terms 
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Intro... 

• However, it is also possible to have a 
dichotomous dependent variable.  

• Dichotomous variables are 
nominal variables which have only two 
categories or levels. In econometrics, 
dummy variables are used to represent 
dichotomous variables.  Why? 
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Intro... 

• A dummy variable is one that takes the 
value 0 or 1.  

• Why is it used? Regression analysis treats 
all independent (X) variables in the 
analysis as numerical but most 
dichotomous (and in fact categorical)  
variables are non-numerical (involving 
the use of alphabets). 
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Intro... 
• The use of dummy variables is prominent 

in Social Sciences/Arts & Humanities 
where human behaviour is studied. 

• Examples of binary outcomes:  

Modelling Labour Force Participation: 
YES/NO 

 The respondent here can either say “yes” 
if he/she is in the labour force or “no” if 
he/she is not.  Thus, we can assign “1” to 
“yes”  and “0” to “no”.  
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Intro... 

Modelling the 2015 presidential election in 
Nigeria. Here, we may be interested in the 
factors that influence whether a political 
candidate wins the presidential election or 
not.  The outcome (response) variable is 
binary (0/1);  win or lose.  
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Intro... 

Modelling the Demand for Satellite TV 
Facilities: The dependent variable here 
represents the decision of the household 
to subscribe for satellite facilities or not. 
Thus, the response variable is “1”if the 
household subscribes and “0” other wise.  
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Intro... 

Modelling student academic performance 
in econometrics. The outcome (response) 
variable is binary (0/1);  pass or fail.  

Modelling admission into graduate 
school. The outcome (response) variable is 
binary (0/1);  admit or don’t admit.  
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Intro... 

• In general, when dealing with a 
dichotomous dependent variable (Y), it is 
your responsibility to convert the non-
numerical information to binary.     
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Intro... 

• The following terms are used 
interchangeably to describe models with 
binary dependent variables. 

 Qualitative Response Models (QRM) 

Discrete Response Models (DRM) 

Binary Choice Models (BCM) 

Binary Response Models (BRM) 
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Intro... 

• There are three essential features of a 
binary choice model: 

 The dependent variable is qualitative in 
nature 

 The response is binary in nature 

 It involves non-linear estimation. Why? 
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Intro... 

• The linear estimators rely on normality 
assumption. However, binary response 
models are non-normal and therefore, the 
linear estimators such as OLS may not 
applicable particularly when dealing with 
small samples.  
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Intro... 

• The error terms of binary response models 
tend to exhibit heteroscedasticity . Thus, 
the application of OLS will bias the 
standard errors and hence inferential 
statistics using the standard errors such as 
the t-values will be invalid.   
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Intro... 

• Binary response models are usually 
expressed as linear functions  of a set of 
regressors. The estimates of Y given X are 
conditional probabilities of the event  Y 
occurring (i.e. When it is 1). Therefore, the 
conditional probabilities are expected to 
lie between 0 and 1. However, if OLS is 
used, conditional probabilities are more 
likely to lie outside the (0,1) range.  
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Intro... 

• As we shall see in subsequent slides, the 
Probit and Logit models can be employed 
to resolve the highlighted problems 
inherent in the use of linear estimators.     
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Generalization 

• The traditional way of introducing probits 
and logits in econometrics is not as a 
response to a functional problem. Instead, 
probits and logits are traditionally viewed 
as models suitable for estimating 
parameters of interest when the 
dependent variable is not fully observed.  

• This we illustrate as follows:  
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Generalization 

• Let �∗ be a continuous variable that we do 
not observe – a latent variable – and 
assume �∗ is determined by the model: 
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0 1 1 2 2 k ky x x x e         

y X e  



Generalization 

• where � is a residual term, assumed 
uncorrelated with � (i.e. � is not 
endogenous). While we do not observe �∗, 
we do observe the discrete choice made by 
the individual, according to the following 
choice rule: 

            � = 1 if  �∗ > 0 

            � = 0 if  �∗ ≤ 0 
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Generalization 

• We can view �∗ as representing net utility 
of, say, owning a house.  

• The individual undertakes a cost-benefit 
analysis and decides to purchase a house 
if the net utility is positive. 

•  We do not observe the amount of net 
utility; all we observe is the actual 
outcome of whether or not the individual 
does buy a house 
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Generalization 

• In fact, if we had data on �∗, we could 
estimate the latent variable model with 
OLS as usual.  

• We can now model the probability that a 
‘positive’ choice is made (e.g. buying as 
distinct from not buying a house).  
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Generalization 
• We can show that: 

                   Pr � = 1|� = Pr �∗ > 0|�  

   Pr � = 0|� = Pr �∗ ≤ 0|�  

         = 1 − Pr � = 1|�  

The error term (e) can follow either a logistic 
distribution or standard normal distribution 
depending on the choice of probability 
model being estimated. 
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Generalization 

 

The logistic distribution is for Logit models 

While standard normal distribution is for 
Probit models  

 

26 



 

The Logistic Regression 
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The Logit ... 

• Consider a class of BRM of the form: 

 

• The equation above defines the 
conditional probabilities of Y=1  (i.e. Y 
occurring) given X.  

• For a more compact representation: 

  

 

 

 

   0 1 1 2 2Pr 1 k kXY X XG X        

   Pr 1y X G X  
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The Logit ... 

• In the Logit model,           is given as: 

 

 

 

• The equation above is the cumulative 
(logistic) distribution function (cdf) and it 
ranges between zero and one for all values 
of       . 

 X

 
 
 

exp
Λ

1 exp

X
X

X









X
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The Logit ... 
• Note the following about the equation:   

 is a non-linear function of  and 
hence, we cannot use OLS. 

The errors follow standard logistic 
distribution.  

The estimator is the Maximum Likelihood 
estimator. 

 X
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The Logit ... 

• When dealing with Logistic regressions, 
the following parameters are usually 
estimated: 

Odds ratios 

Log odds 

Marginal effects & Conditional Probability  

• Let us now take each in turn. 
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The Logit ... 
• Odds Ratio: It is the ratio of probability of 

Y=1 to the probability that Y=0.  

• This is given as: 

 

 

 

• How? 

• Note that the numerator denotes the prob. 
that Y=1 and the denominator is for the prob. 
that Y=0. 

 

 

 

 
 

 
Λ

exp
1 Λ

X
X

X








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The Logit ... 
• Recall: 

 

• As a consequence, 

 

 

• Given these representations, it is easy to 
show that: 

 

 

 
 
 

exp
Λ

1 exp

X
X

X








 
 

1
1 Λ

1 exp
X

X



 



 
 

 
Λ

exp
1 Λ

X
X

X








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The Logit ... 

• Let us consider a simple illustration.  
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The Logit ... 

• The Problem:  

• A researcher is interested in how variables, 
such as GPA (grade point average) and 
GQES (graduate qualifying exam scores) 
affect admission into graduate school 
(GSA). 

• The response variable (GSA), admit/don't 
admit, is a binary variable. 
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The Logit ... 
• The model can be expressed as: 

 

 

 

• If after estimation we obtain the following for the 
relevant parameters: 

 
 

 

 

• Not to worry, the estimation process will be 
demonstrated later using Stata software. 

 

 
 
 

0 1 2

0 1 2

exp GQES GPA
Pr GSA=1GQES,GPA

1 exp GQES GPA

  

  



 

 

0 2. 68ˆ 38  

1 . 14ˆ 0 00 

2
ˆ 0.4777 
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The Logit ... 

• Interpreting the odds ratios : 

• For GQES: The results show that for a unit 
increase in GQES, the odds ratio in favour 
of gaining admission into graduate school 
increases by 1.0014 [i.e. exp(0.0014)] or 
about 0.14%.  

• The percent change is obtained by: 

  [exp(0.0014)-1]* 100 % 
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The Logit ... 

• For GPA: The results show that for a unit 
increase in GPA, the odds in favour of 
gaining admission into graduate school 
increases by 1.6124 [i.e. exp(0.4777) or 
about 61.24% [i.e. (exp(0.4777)-1)* 100 %] 
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The Logit ... 

• Log  odds: This is obtained by taking the 
natural log of the odds ratio. This gives:  

 

 

 

 

 
 

  

0 1 1 2 2

Λ
In ln exp

1 Λ

k k

X
L X X

X

X X X X


 



    

 
     

    
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The Logit ... 

• In relation to our example, the log odds 
can be expressed as: 

 

• Given our earlier estimates,  the equation 
becomes: 

0 1 2GQES GPAL X     

= 2.3868 .0014*0 0.GQES 4777*GPAL  
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The Logit ... 

• Interpretation of the log odds for the 
individual variables:  

• For GQES: The results show that for a unit 
increase in GQES, the log odds in favour 
of gaining admission into graduate school 
increase by 0.0014.  
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The Logit ... 

• For GPA: The results show that the log 
odds in favour of gaining admission into 
the graduate school increases by 0.48 with 
each additional unit increase in GPA.  
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The Logit ... 

• Note the following about the Odds Ratio 
and the Log Odds Ratio: 

Log odds = log (odds ratio)=  

Odds ratio = exp (log (odds ratio))= 

• Check our illustration carefully, the 
estimates reported for all the coefficients 
are in favour of log odds hence, the need to 
exponentiate the coefficients.  

 

 ˆexp X

ˆX
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The Logit ... 

• Also, note that the interpretation of the log 
odds was drawn directly from the 
reported estimates without any further 
transformation.  

• On the other hand, the odds ratios were 
obtained from the log odds by 
exponentiating the latter to compute the 
odds ratio. 

• Kindly check to confirm.  
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The Logit ... 

• Nonetheless, you may decide to start with 
the Odds ratio but you have to be mindful 
of the required transformation.    

Again, not to worry, there are commands 
in Stata that can be used to generate all the 
relevant statistics.  

However, understanding the underlying 
theory is as important as knowing how to 
operate the statistical softwares.  
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The Logit ... 
• Marginal Effect:  It measures the change 

in the probability of Y=1 as a result of a 
unit change in a particular explanatory 
variable.     

• In the case of logit models however, 
obtaining the marginal effects is more 
complicated. 

• Recall that:  

 
 
 

exp
Λ

1 exp

X
X

X







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The Logit ... 

• The marginal effect is computed as: 

 

 

 

• where 

 

• Let us continue with our illustration.  

 
      

Λ
*Λ *Λ 1 Λ

X
X X X

X


    


  



 
 
 

exp
Λ

1 exp

X
X

X








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The Logit ... 
• Marginal Effect for GQES  

     

 

 

 

 

 

• The              gives the probability value of 
being admitted into graduate school 
evaluated at the mean values of the 
regressors.   

 
 
 

0 1 2

0 1 2

exp GQES GPA
Λ

1 exp GQES GPA
X

  




 

 

 




    1 1 Λ*Λ X X 

 Λ X
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The Logit ... 

• Let us assume that                    &                    . 

 

 

 

 

• Thus,        

 

 

GPA 3.3899 GQES 587.7

   

   

ˆexp exp 2.3868 .0014*587.7 4777*3.3899

ˆexp exp 0.

0 0.

0553 1.0569

X

X














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The Logit ... 

• The results indicate that students with 
GQES  & GPA of approximately 600 and 
4.0 respectively have about 51% probability 
(fairly above average chance) of being 
admitted into the graduate school.  

 

• The ME for GQES = 0.0014*0.514[1-0.514] 

                             = 0.0003 
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The Logit ... 

• Interpretation: 

• A unit increase in GQES will increase the 
probability of gaining admission into the 
graduate school by 0.0003 or 0.03%.  

 

• Class Exercise 1:  

• Compute the Marginal effect for GPA and 
interpret your results.  
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The Logit ... 

• Dealing with Binary regressors in logit 
models: 

• We can extend our earlier example to 
include a dummy regressor such as the 
prestige of the undergraduate institutions 
attended by the applicants.  

• INST =1 if a student attended one of the 
top-ranked universities and zero other 
wise.    
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The Logit ... 
• The extended equation is given as: 

 

 

 

 

 

• Recall that GQES and GPA are continuous 
variables while INST is a discrete (binary) 
variable.  

 
   

 
 

0 1 2 3

0 1 2 3

0 1 2 3

Pr GSA=1 GQES,GPA, INST

Λ Λ GQES GPA

ex

INST

INSp GQES GPA

1 exp GQES G

T

INSTPA

X    

   

   

 




  

  

  
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The Logit ... 

• Our focus now is on INST.  

• Log Odds: 

• Let us assume that the coefficient for the 
INST is 0.3523 after estimating the log 
odds function. 

• The log odds in favour of gaining 
admission into the graduate school is 
0.3523  higher for students from top-
ranked universities relative to those from 
other universities.  
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The Logit ... 

• Odds Ratio: 

• The odds ratio is exp(0.3523) = 1.4223. This 
suggests that students from top-ranked 
universities are 1.4223 times (about 
42.23%) more likely to gain admission into 
the graduate school than students from 
other universities.  
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The Logit ... 

• Marginal Effect for a Binary regressor 
(INST): 

   0 1 2 3Λ GQESˆ Gˆ Pˆ ˆ 1A     

  0 1 2 3Λ GQES GPˆ ˆ ˆ 0Aˆ     
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•An Empirical Application 
of Logistic Models using 

Stata 
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The Logit .... 

• The Problem: 

• We want to examine  whether a new 
method of teaching economics 
significantly influenced performance in 
later economics courses. 
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The Logit … 
• Variables are Grade, PSI, GPA & TUCE. 

Grade (Dependent variable) indicates 
whether a student improved his/her grades 
after the new teaching method PSI had been 
introduced (0 = no, 1 = yes).  

• PSI indicates if a student attended courses 
that used the new method (0 = no, 1 = yes). 

GPA (Average grade of the student) 

TUCE is the Score of an intermediate test 
which shows previous knowledge of a 
topic. 
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The Logit … 
• Data: 

 
S/N grade psi tuce gpa S/N grade psi tuce gpa 

1 0 0 20 2.66 17 0 0 25 2.75 

2 0 0 22 2.89 18 0 0 19 2.83 

3 0 0 24 3.28 19 0 1 23 3.12 

4 0 0 12 2.92 20 1 1 25 3.16 

5 1 0 21 4 21 0 1 22 2.06 

6 0 0 17 2.86 22 1 1 28 3.62 

7 0 0 17 2.76 23 0 1 14 2.89 

8 0 0 21 2.87 24 0 1 26 3.51 

9 0 0 25 3.03 25 1 1 24 3.54 

10 1 0 29 3.92 26 1 1 27 2.83 

11 0 0 20 2.63 27 1 1 17 3.39 

12 0 0 23 3.32 28 0 1 24 2.67 

13 0 0 23 3.57 29 1 1 21 3.65 

14 1 0 25 3.26 30 1 1 23 4 

15 0 0 26 3.53 31 0 1 21 3.1 

16 0 0 19 2.74 32 1 1 19 2.39 60 



The Logit … 

• Estimation Procedure: 

 Descriptive Statistics 

 Estimation  

 Scenario Analyses 
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The Logit … 

• Descriptive Statistics 

• Step 1: Load your data into Stata 

• Step 2: Use relevant commands in Stata to 
generate the summary statistics. 

• Since we already have our data in .dta 
format, you may use stata command or 
menu approach to load the required data.  
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The Logit … 

• Compute summary statistics for 
continuous variables 
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         gpa          32    3.117188    .4667128       2.06          4

        tuce          32     21.9375    3.901509         12         29

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

. su tuce gpa



The Logit… 

Highlights of the descriptive statistics: 

 The average score of the students in an 
intermediate test (TUCE) is about 22 their 
GPAs average 3.12. 

We find that the variations in TUCE and 
GPA across the respondents seem 
minimal although the former is higher 
than the latter.  
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The Logit … 

      Total           32      100.00

                                                

          1           11       34.38      100.00

          0           21       65.63       65.63

                                                

      grade        Freq.     Percent        Cum.

. tab grade

65 

You are to tabulate discrete variables 
and not to summarize. Why?  



The Logit… 

Some highlights of the statistics: 

 About 34.4% (equivalent to 11) and 65.6% 
(equivalent to 21) of the respondents 
report high and low academic 
performance respectively. 

 In other words, more than half of the 
respondents report low academic 
performance. 
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The Logit … 

      Total           32      100.00

                                                

          1           14       43.75      100.00

          0           18       56.25       56.25

                                                

        psi        Freq.     Percent        Cum.

. tab psi
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The Logit… 

Some highlights of the statistics: 

 About 43.7% (equivalent to 14) of the 
respondents were exposed to the new 
teaching method (PSI) while  56% 
(equivalent to 18) were not.  

 In other words, more than half of the 
respondents were not exposed to the new 
teaching method. 
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The logit … 

     Total          18         14          32 

                                             

         1           3          8          11 

         0          15          6          21 

                                             

     grade           0          1       Total

                      psi

. tab grade psi
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The Logit… 
• You can as well determine the distribution of tuce  

    and gpa between high and low performance.  

70 

         gpa          11    3.432727     .503132       2.39          4

        tuce          11    23.54545    3.777926         17         29

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

. su tuce gpa if grade==1

         gpa          21    2.951905    .3572201       2.06       3.57

        tuce          21    21.09524    3.780275         12         26

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

. su tuce gpa if grade==0



The Logit … 

Estimation: 

• Odds Ratio 

• Log Odds 

• Marginal Effects 

• Some plausible scenarios 
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The Logit … 
• Odds ratio:  

                                                                              

       _cons     2.21e-06   .0000109    -2.64   0.008     1.40e-10      .03487

         gpa     16.87972   21.31809     2.24   0.025     1.420194    200.6239

        tuce     1.099832   .1556859     0.67   0.501     .8333651    1.451502

         psi     10.79073   11.48743     2.23   0.025     1.339344    86.93802

                                                                              

       grade   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -12.889633                       Pseudo R2       =     0.3740

                                                  Prob > chi2     =     0.0015

                                                  LR chi2(3)      =      15.40

Logistic regression                               Number of obs   =         32

. logistic grade psi tuce gpa
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The Logit… 
 Highlights of the results: 

 TUCE: The odds ratio in favour of high 
academic performance increases by 10% [i.e. 
(1.10-1)*100] with each additional unit 
increase in tuce.  

 GPA: A unit increase in gpa will lead to 16.88 
units (1588%) increase in the odds ratio in 
favour of high academic performance.  

  PSI: Students with exposure to the new 
method are 10.79 times more likely to have 
high performance than students without 
exposure. 
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The Logit … 
• Log  Odds  

                                                                              

       _cons    -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613

         gpa     2.826113   1.262941     2.24   0.025     .3507938    5.301432

        tuce     .0951577   .1415542     0.67   0.501    -.1822835    .3725988

         psi     2.378688   1.064564     2.23   0.025       .29218    4.465195

                                                                              

       grade        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -12.889633                       Pseudo R2       =     0.3740

                                                  Prob > chi2     =     0.0015

                                                  LR chi2(3)      =      15.40

Logistic regression                               Number of obs   =         32

Iteration 5:   log likelihood = -12.889633  

Iteration 4:   log likelihood = -12.889633  

Iteration 3:   log likelihood = -12.889639  

Iteration 2:   log likelihood = -12.894606  

Iteration 1:   log likelihood = -13.259768  

Iteration 0:   log likelihood =  -20.59173  

. logit grade psi tuce gpa
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The Logit … 

• Confirm the computational relationship 
between Odds Ratio and Log Odds from 
the results.  

• What is your observation? 
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The Logit … 
• Marginal Effects 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .5338589      .23704    2.25   0.024   .069273  .998445   3.11719

    tuce     .0179755      .02624    0.69   0.493  -.033448  .069399   21.9375

     psi*    .4564984      .18105    2.52   0.012    .10164  .811357     .4375

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .25282025

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx compute
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The Logit … 

• Some plausible scenarios for marginal effects: 

• Case 1A: PSI=1, TUCE=20, GPA=4 

• Case 1B:  PSI=1, TUCE=20, GPA=2 

• Case 2A: PSI=0, TUCE=20, GPA=4 

• Case 2B:  PSI=0, TUCE=20, GPA=2 

• Case 3A: PSI=1, TUCE=20, GPA=4 

• Case 3B:  PSI=0, TUCE=20, GPA=4 

• Case 4A: PSI=1, TUCE=20, GPA=2 

• Case 4B:  PSI=0, TUCE=20, GPA=2 
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The Logit … 

• Case 1A: PSI=1, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa      .187447      .15883    1.18   0.238  -.123848  .498742         4

    tuce     .0063115      .01418    0.45   0.656  -.021483  .034106        20

     psi*     .382141      .25122    1.52   0.128  -.110233  .874515         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .92857112

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=1, tuce=20, gpa=4)
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The Logit … 
• Case 1B:  PSI=1, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .1179364      .12099    0.97   0.330    -.1192  .355072         2

    tuce      .003971      .00802    0.50   0.620   -.01174  .019682        20

     psi*    .0394245      .05736    0.69   0.492  -.073006  .151855         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .04363495

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=1, tuce=20, gpa=2)
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The Logit … 

• Case 2A: PSI=0, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .7004358      .26442    2.65   0.008   .182177  1.21869         4

    tuce     .0235843       .0366    0.64   0.519  -.048141   .09531        20

     psi*     .382141      .25122    1.52   0.128  -.110233  .874515         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .54643009

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=0, tuce=20, gpa=4)
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The Logit … 
• Case 2B:  PSI=0, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .0118491      .01782    0.66   0.506  -.023081  .046779         2

    tuce      .000399      .00092    0.43   0.666  -.001411  .002209        20

     psi*    .0394245      .05736    0.69   0.492  -.073006  .151855         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .00421044

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=0, tuce=20, gpa=2)
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The Logit … 
• Case 3A: PSI=1, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa      .187447      .15883    1.18   0.238  -.123848  .498742         4

    tuce     .0063115      .01418    0.45   0.656  -.021483  .034106        20

     psi*     .382141      .25122    1.52   0.128  -.110233  .874515         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .92857112

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=1, tuce=20, gpa=4)
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The Logit … 
• Case 3B:  PSI=0, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .7004358      .26442    2.65   0.008   .182177  1.21869         4

    tuce     .0235843       .0366    0.64   0.519  -.048141   .09531        20

     psi*     .382141      .25122    1.52   0.128  -.110233  .874515         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .54643009

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=0, tuce=20, gpa=4)
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The Logit … 
• Case 4A: PSI=1, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .1179364      .12099    0.97   0.330    -.1192  .355072         2

    tuce      .003971      .00802    0.50   0.620   -.01174  .019682        20

     psi*    .0394245      .05736    0.69   0.492  -.073006  .151855         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .04363495

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=1, tuce=20, gpa=2)
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The Logit … 
• Case 4A: PSI=0, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .0118491      .01782    0.66   0.506  -.023081  .046779         2

    tuce      .000399      .00092    0.43   0.666  -.001411  .002209        20

     psi*    .0394245      .05736    0.69   0.492  -.073006  .151855         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .00421044

      y  = Pr(grade) (predict)

Marginal effects after logit

. mfx, at(psi=0, tuce=20, gpa=2)
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The Logit …  

• In sum, the various scenarios  reveal that 
the probability that a student’s grade will 
increase after exposure to PSI is far greater 
for students with high GPAs than for 
those with low GPAs. 
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The Probit Regression 
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The Probit ... 

• Consider a class of BRM of the form: 

 

• The equation above defines the 
conditional probabilities of Y=1  (i.e. Y 
occurring) given X.  

• For a more compact representation: 

  

 

 

 

   0 1 1 2 2Pr 1 k kXY X X X        

   Pr 1y X X   
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The Probit ... 

• In the Probit model,          can be expressed 
as: 

 

 

 

• The equation above is the cumulative 
standard normal distribution function and 
it ranges between zero and one for all 
values of       . 

 X

X

 
21

exp  
22

where Z

Z Z
X dZ

X










 
   

 




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The Probit ... 
• Note the following about the equation:   

 is a non-linear function of  and 
hence, we cannot use OLS. 

The errors follow standard normal 
distribution.  

The estimator is the Maximum Likelihood 
estimator. 

 X

90 



The Probit ... 

• When dealing with Probit regressions, the 
following parameters are usually 
estimated: 

Z-scores 

Marginal effects  

 Conditional Probability  

• Let us now take each in turn. 
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The Probit ... 

• An Illustration (using our previous example):  

• The Problem:  

• A researcher is interested in how variables, 
such as GPA (grade point average) and GQES 
(graduate qualifying exam scores) affect 
admission into graduate school (GSA). 

• The response variable (GSA), admit/don't 
admit, is a binary variable. 
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The Probit ... 
• The model can be expressed as: 

 
 
 
 
 

• If after estimation we obtain the following for the 
relevant parameters: 

                  
 

• Not to worry, the estimation process will be 
demonstrated later using Stata software. 
 
 

0 1. 68ˆ 49   1 . 09ˆ 0 00  2
ˆ 0. 7382 

 
2

0 1 2

1
Pr GSA=1GQES,GPA exp  

22

GQES GPA 

Z Z
dZ

Z



  



 
 

 


 




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The Probit … 

• Z-score: It denotes the Z-value of a normal 
distribution. This statistic is similar to the 
log odds in terms of the RHS of the 
underlying specification. 

• Recall: 

• For log odds;  

 

• Similarly, for Z-scores; 

  

 

0 1 2GQES GPA    (1)L X     

0 1 2GQES GPA     (2)Z X      
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The Probit … 

• Note the difference between the log of odds & 
Z-scores: 

While the RHS of the equation  for (1) is 
determined by taking the log of the odds, that 
of the Z-scores is obtained by taking the 
reciprocal of the standard normal distribution 
function. 

•    
 

 1

Λ
In

1 Λ

X
L X

X

Z score X X






 

 
  

 

   
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The Probit … 

 While (1) follows the standard logistic 
distribution, (2) is consistent with the 
standard normal distribution.  

 If the estimation of the coefficients reported 
follows equation (2) using the MLE (we will 
demonstrate this using stata), then, the 
coefficients are already expressed in z-cores.     
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The Probit ... 

• Interpretation of the Z scores: 

• In relation to our example, the Z-scores 
can be expressed as: 

 

• Given our earlier estimates,  the equation 
becomes: 

0 1 2GQES GPAz X     

1.4968 .0009*0 0.GQES *GPA3827z    
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The Probit ... 

• For GQES: The results show that the z-
score in favour of gaining admission into 
graduate school increases by 0.0009 for 
each additional unit increase in GQES.  

 

• For GPA: The results show that a unit 
increase in GPA will lead to an increase in 
the z-score in favour of gaining admission 
into graduate school by 0.3827.  
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The Probit ... 
• Marginal Effect:  As previously defined, it 

measures the change in the probability of 
Y=1 as a result of a unit change in a 
particular explanatory variable.    

• That is;   

 

• Recall that:  

  
21

exp    
22

Z

Z
Z
dZ
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The Probit … 
• We can rewrite as: 

 

 

 

• where       & 

 

• Therefore,   

 

      
Z

ZZ dZ
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
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The Probit ... 

• Marginal Effect for GQES  

     

 

 

 

• Where                                          . 

• From our results, �� is known but we need 
to compute � and  � � . 

 
21

exp
22

Z
Z




 
  

 

 1 * Z 

0 1 2GQES GPA Z     
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The Probit… 
• Like the log odds, we need to determine the 

level of the regressors at which the Z can be 
computed.  

• Recall the equation for the Z: 

 

• You may consider the mean values of the 
regressors.  

• Therefore, the equation becomes: 

 

 
102 

1.4968 .0009*0 0.GQES *GPA3827Z    

Z= 1.4968 .0009*0 0.38GQ 27ES *GPA  



The Probit ... 

• As previously noted, the mean values are  

 

 

• By further simplification, we have: 

 

 

• Thus; 

 
21 0.3295

exp 0.3778
244

7

Z
 
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 

103 

GPA 3.3899;GQES 587.7 

Z= 1.4968 .0009*587.7 *3.3899

0.3295

0 0.3827

Z
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



The Probit ... 

• The ME for GQES = 0.0009*0.3778 

                             = 0.0003 

• Interpretation: 

• A unit increase in GQES will increase the 
probability of gaining admission into the 
graduate school by 0.0003 or 0.03%.  
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The Probit ... 

• Class Exercise 2:  

• Compute the Marginal effect for GPA and 
interpret your results.  
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The Probit ... 

• Dealing with Binary regressors in Probit 
models: 

• Like the Logit case, we can extend our 
earlier example to include a dummy 
regressor such as the prestige of the 
undergraduate institutions attended by 
the applicants.  

• INST =1 if a student attended one of the 
top-ranked universities and zero other 
wise.    
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The Probit ... 

• The extended equation is given as: 

 

 

 

• Recall that GQES and GPA are continuous 
variables while INST is a discrete (binary) 
variable.  

 
   0 1 2 3

Pr GSA=1 GQES,GPA, INST

GQES GP SA IN TX       
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The Probit ... 

• Our focus now is on INST.  

• Z-Scores: 

• Let us assume that the coefficient for the 
INST is 0.1739 after estimating the Z-score 
function. 

• The Z-score in favour of gaining 
admission into the graduate school is 
0.1739  higher for students from top-
ranked than those from other universities.  
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The Probit ... 

• Marginal Effect for a Binary regressor 
(INST): 

   0 1 2 3GQEˆ ˆ ˆ ˆ 1S GPA     

  0 1 2 3GQESˆ Gˆ PAˆ ˆ 0     
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•An Empirical Application 
of Probit Models using 

Stata 
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The Probit … 

• Estimation: 

• Z-scores 

• Marginal Effects 

• Some plausible scenarios 
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The Probit … 
• Z-scores:  

                                                                              

       _cons     -7.45232   2.542472    -2.93   0.003    -12.43547   -2.469166

         gpa      1.62581   .6938825     2.34   0.019     .2658255    2.985795

        tuce     .0517289   .0838903     0.62   0.537    -.1126929    .2161508

         psi     1.426332   .5950379     2.40   0.017     .2600795    2.592585

                                                                              

       grade        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -12.818803                       Pseudo R2       =     0.3775

                                                  Prob > chi2     =     0.0014

                                                  LR chi2(3)      =      15.55

Probit regression                                 Number of obs   =         32

Iteration 4:   log likelihood = -12.818803  

Iteration 3:   log likelihood = -12.818803  

Iteration 2:   log likelihood = -12.818963  

Iteration 1:   log likelihood = -12.908126  

Iteration 0:   log likelihood =  -20.59173  

. probit grade psi tuce gpa
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The Probit … 
• Marginal Effects 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .5333471      .23246    2.29   0.022   .077726  .988968   3.11719

    tuce     .0169697      .02712    0.63   0.531  -.036184  .070123   21.9375

     psi*     .464426      .17028    2.73   0.006   .130682   .79817     .4375

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .26580809

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx compute

113 



The Probit … 

• Some plausible scenarios for marginal effects: 

• Case 1A: PSI=1, TUCE=20, GPA=4 

• Case 1B:  PSI=1, TUCE=20, GPA=2 

• Case 2A: PSI=0, TUCE=20, GPA=4 

• Case 2B:  PSI=0, TUCE=20, GPA=2 

• Case 3A: PSI=1, TUCE=20, GPA=4 

• Case 3B:  PSI=0, TUCE=20, GPA=4 

• Case 4A: PSI=1, TUCE=20, GPA=2 

• Case 4B:  PSI=0, TUCE=20, GPA=2 
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The Probit … 

• Case 1A: PSI=1, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .2068523      .18384    1.13   0.261  -.153468  .567173         4

    tuce     .0065815      .01626    0.40   0.686   -.02528  .038443        20

     psi*    .4006438      .23361    1.72   0.086  -.057224  .858512         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .93471169

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=1, tuce=20, gpa=4)
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The Probit … 
• Case 1B:  PSI=1, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .1427923      .15165    0.94   0.346  -.154438  .440022         2

    tuce     .0045433      .01004    0.45   0.651   -.01514  .024227        20

     psi*    .0401756      .06883    0.58   0.559  -.094733  .175085         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .04094808

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=1, tuce=20, gpa=2)
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The Probit … 

• Case 2A: PSI=0, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .6462381      .24728    2.61   0.009   .161577   1.1309         4

    tuce     .0205616      .03412    0.60   0.547  -.046309  .087432        20

     psi*    .4006438      .23361    1.72   0.086  -.057224  .858512         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .53406788

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=0, tuce=20, gpa=4)
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The Probit … 
• Case 2B:  PSI=0, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .0043174      .01189    0.36   0.717  -.018987  .027621         2

    tuce     .0001374      .00049    0.28   0.778  -.000815   .00109        20

     psi*    .0401756      .06883    0.58   0.559  -.094733  .175085         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .00077243

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=0, tuce=20, gpa=2)
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The Probit … 
• Case 3A: PSI=1, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .2068523      .18384    1.13   0.261  -.153468  .567173         4

    tuce     .0065815      .01626    0.40   0.686   -.02528  .038443        20

     psi*    .4006438      .23361    1.72   0.086  -.057224  .858512         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .93471169

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=1, tuce=20, gpa=4)
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The Probit … 
• Case 3B:  PSI=0, TUCE=20, GPA=4 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .6462381      .24728    2.61   0.009   .161577   1.1309         4

    tuce     .0205616      .03412    0.60   0.547  -.046309  .087432        20

     psi*    .4006438      .23361    1.72   0.086  -.057224  .858512         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .53406788

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=0, tuce=20, gpa=4)
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The Probit … 
• Case 4A: PSI=1, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .1427923      .15165    0.94   0.346  -.154438  .440022         2

    tuce     .0045433      .01004    0.45   0.651   -.01514  .024227        20

     psi*    .0401756      .06883    0.58   0.559  -.094733  .175085         1

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .04094808

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=1, tuce=20, gpa=2)
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The Probit … 
• Case 4A: PSI=0, TUCE=20, GPA=2 

 

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

     gpa     .0043174      .01189    0.36   0.717  -.018987  .027621         2

    tuce     .0001374      .00049    0.28   0.778  -.000815   .00109        20

     psi*    .0401756      .06883    0.58   0.559  -.094733  .175085         0

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .00077243

      y  = Pr(grade) (predict)

Marginal effects after probit

. mfx, at(psi=0, tuce=20, gpa=2)
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The Probit …  

• The results are similar to those obtained 
under Logit models. The various scenarios 
suggest that the probability that a 
student’s grade will increase after 
exposure to PSI is far greater for students 
with high GPAs than for those with low 
GPAs. 

123 



Logit vs. Pobit 

• Results tend to be very similar  

• Preference for one over the other tends to 
vary by discipline.  

• Amemiya suggests multiplying a Logit 
estimate by 0.625 to get the corresponding 
Probit estimate. 

• Conversely, multiplying a Probit estimate 
by 1.6 (i.e. 1/0.625) gives the 
corresponding logit estimate.  Try it!!! 
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Diagnostics for Binary Response Models 

• In order for our analysis to be valid, our 
model has to satisfy the assumptions of the 
BRM. 

•  When the assumptions of the BRM are not 
met, we may have problems, such as biased 
coefficient estimates or very large standard 
errors for the regression coefficients, and 
these problems may lead to invalid statistical 
inferences.  
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Diagnostics … 

• Therefore, before we can use our model to 
make any statistical inference, we need to 
check that our model fits sufficiently well. 
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Diagnostics … 
Is the model correctly specified? 

   Specification test  

Is the overall model statistically 
significant?  

 Goodness-of-fit test 

 Are the regressors orthogonal 

(uncorrelated)? 

 Multicollinearity test 
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Diagnostics … 
• Specification test: This is conducted to 

confirm that the probability function is 
correctly specified.  

• Procedure: 

• The test involves two steps 

• Step 1: Estimate the probability function 
(either logit or probit) 

• Step 2: Use the information from step 1 to 
build the model for the test and estimate 
appropriately.  
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Diagnostics … 
• Specification test for the Logit Model: Step 1. 

                                                                              

       _cons    -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613

         gpa     2.826113   1.262941     2.24   0.025     .3507938    5.301432

        tuce     .0951577   .1415542     0.67   0.501    -.1822835    .3725988

         psi     2.378688   1.064564     2.23   0.025       .29218    4.465195

                                                                              

       grade        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -12.889633                       Pseudo R2       =     0.3740

                                                  Prob > chi2     =     0.0015

                                                  LR chi2(3)      =      15.40

Logistic regression                               Number of obs   =         32

Iteration 5:   log likelihood = -12.889633  

Iteration 4:   log likelihood = -12.889633  

Iteration 3:   log likelihood = -12.889639  

Iteration 2:   log likelihood = -12.894606  

Iteration 1:   log likelihood = -13.259768  

Iteration 0:   log likelihood =  -20.59173  

. logit grade psi tuce gpa
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Diagnostics … 
• Specification test: Step 2  

 

                                                                              

       _cons     .0817277   .6074585     0.13   0.893    -1.108869    1.272324

      _hatsq    -.0453861   .1881828    -0.24   0.809    -.4142176    .3234455

        _hat     .9551764   .3834559     2.49   0.013     .2036166    1.706736

                                                                              

       grade        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -12.860434                       Pseudo R2       =     0.3755

                                                  Prob > chi2     =     0.0004

                                                  LR chi2(2)      =      15.46

Logistic regression                               Number of obs   =         32

Iteration 5:   log likelihood = -12.860434  

Iteration 4:   log likelihood = -12.860434  

Iteration 3:   log likelihood = -12.860508  

Iteration 2:   log likelihood = -12.887479  

Iteration 1:   log likelihood = -13.220543  

Iteration 0:   log likelihood =  -20.59173  

. linktest
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Diagnostics … 

• Interpretation: 

• The model is correctly specified if ‘ _hat’ is 
statistically significant and  ‘_hatsq’  is not. 

• In our example, the model is correctly 
specified.  
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Diagnostics … 

How can we resolve specification bias in 
probability models? 

• Exclude redundant variables 

• Include relevant variables such as squared 
terms & interaction terms  

• Note that after modifying the model to 
correct for specification bias, you have to 
conduct the specification test again to 
confirm that the modification is valid.   
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Diagnostics … 

Goodness-of-fit test: 

     (1) Likelihood ratio (LR) test 

     (2) Hosmer and Lemeshow's goodness-
  of-fit test 

•  Note that the LR statistic (1) is reported 
by default when you estimate logit/probit 
models in stata.  
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Diagnostics … 

• The estimated model fits the data well if 
the LR test statistic is statistically 
significant. 
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Diagnostics … 

 Hosmer and Lemeshow's  (HL) goodness-
of-fit test: This test examines  whether the 
predicted frequency and observed 
frequency match closely. The more closely 
they match, the better the fit. 

• Procedure: Two steps 

• Step 1: Estimate the model (logit/probit) 
under consideration. 

• Step 2: Perform the test on the regression 
output obtained in step 1.  
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Diagnostics … 
• HL test for the Logit model 

                  Prob > chi2 =         0.6094

      Hosmer-Lemeshow chi2(8) =         6.34

             number of groups =        10

       number of observations =        32

                                                            

       10   0.8551       3     2.5       0     0.5       3  

        9   0.7167       1     2.0       2     1.0       3  

        8   0.6000       2     1.8       1     1.2       3  

        7   0.4397       1     1.3       2     1.7       3  

        6   0.3784       2     1.4       2     2.6       4  

                                                            

        5   0.2876       1     0.7       2     2.3       3  

        4   0.1770       0     0.5       3     2.5       3  

        3   0.1362       0     0.4       3     2.6       3  

        2   0.1069       0     0.3       3     2.7       3  

        1   0.0982       1     0.3       3     3.7       4  

                                                            

    Group     Prob   Obs_1   Exp_1   Obs_0   Exp_0   Total  

                                                            

  (Table collapsed on quantiles of estimated probabilities)

Logistic model for grade, goodness-of-fit test

. lfit, group(10) table
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Diagnostics … 

• The estimated model fits the data well if 
the HLtest statistic is not statistically 
significant. 
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Diagnostics … 

Mutlicollinearity test: This test is 
conducted to verify if there is presence of 
severe correlations among regressors in 
the model under consideration.  

• A user written program ‘collin’ is used to 
detect the multicollinearity.  

• You have to install the program before 
you conduct the test. 
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Diagnostics … 

• For installation, use the command below 
(you need internet connection for the 
installation): 

    findit collin 

 

Procedure: Two Steps 

Step 1: Install the program if you have not done 
so. 

Step 2: Perform the test (note the command for 
the test)  
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Diagnostics … 
• If all the variables are orthogonal to each 

other, in other words, completely 
uncorrelated with each other, both the 
tolerance and variance inflation factor (VIF) 
are 1. If a variable is very closely related to 
another variable, the tolerance goes to 0, 
and the VIF gets very large. 

• Tolerance = 1 – R2 

• VIF = 1/Tolerance 
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Diagnostics … 

• In other words, the closer the tolerance 
and VIF values to 1, the less severe the 
multicollinearity problem in the model.  

• As a rule of thumb, a tolerance of 0.1 or 
less (equivalently VIF of 10 or greater)  is a 
cause for concern.  
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Diagnostics … 

• Multocollinearity test 

 

----------------------------------------------------

       gpa      1.18    1.08    0.8502      0.1498

      tuce      1.18    1.08    0.8502      0.1498

----------------------------------------------------

  Variable      VIF     VIF    Tolerance    Squared

                        SQRT                   R-

  Collinearity Diagnostics

(obs=32)

. collin tuce gpa
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Diagnostics … 

• Based on the results obtained for the 
tolerance and VIF statistics, we can 
conclude that there is no presence of 
severe multicollinearity problem in the 
model.  
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Diagnostics … 
• How can we deal with severe correlations 

among regressors? 

(1) Identify the source(s) of multicollinearity 
through the multicollinearity test.  

(2) The variable with high VIF and 
Tolerance values is a potential source of 
multicollinearity in the model. 

(3) In connection with (2), you may consider 
any of the following: 
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Diagnostics … 

(a) transform the affected variable 
appropriately in such a way as to make it 
orthogonal to other variables in the model 
(e.g. by demeaning the affected variable(s)) 

(b) consider a more appropriate proxy (i.e. a 
different variable) that will be orthogonal to 
other variable(s)  
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